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Lecture Note to Rice Chapter 8 
 

1 Random matrices 
 
Let   be random variables (r.v.’s). The matrix , 1, 2, , , 1, 2, ,ijY i m j= =K nK
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is called a random matrix ( with a joint mn-dimensional distribution, 11, 12( , , mnf y y yK ). 
The expected value of Y is defined as 
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The expectation satisfies the following rules (which follows directly from the definition 
(1) combined with the corresponding linear properties for the expectation in the scalar 
case): 
 

i. E( ) E( )AY C A Y C+ = ⋅ +   
where A, C, are any matrices of constants with dimensions compatible 
with Y (i.e. ~A k m× , and  ~C k n× , where k is arbitrary).  

 
 

ii. E( ) E( )AYB C A Y B C+ = ⋅ ⋅ +   
where A, B, C are any constant matrices compatible with Y in dimension 
so that the product and sum is well defined.. 

 
 

iii. [ ]E( ') E( ) 'Y Y=   where  'A  denotes the transposed matrix  
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If   is a n-dimensional random vector, it’s expectation, 
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written, Yµ ), is therefore the vector of individual expectations, 
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Let  E ( )( )ij i i j j jiY Yσ µ µ⎡= − − =⎣ σ⎤⎦  be the covariance between  and iY jY . In particular 

we have . The covariance matrix of Y (denoted as ) is 
defined as the matrix 

2E ( ) var( )ii i i iYσ µ⎡ ⎤= − =⎣ ⎦ Y

Y ⎞
⎟
⎟
⎟
⎠

=

σ
= Σ

cov( )Y
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which can be expressed as 
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Example 1 
Suppose that   are iid with expectation  1 2, , , nY Y YK E( )iY η=  and  2var( )iY σ= . Then the 
vector   has expectation 1' ( , , )nY Y Y= K
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and covariance matrix (since cov( , ) 0ij i jY Yσ = =  for i j≠ ): 
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where nI  is the n-dimensional identity matrix.    (End of example) 
 
  
If   is a random vector, and A a 1' ( , , )nY Y Y= K p n×  constant matrix, we obtain from i.-
iii. (and the fact that  ( ) ' ' 'BC C B=  for matrices B and C): 
 
(2) E( ) E( )AY A Y Aµ= ⋅ =  
 
and 
 
(3) cov( ) cov( ) ' 'AY A Y A A A= ⋅ ⋅ = Σ       (i.e. a  p p×  matrix) 
 
which follows from 
 

[ ] [ ] [ ]cov( ) E ( )( ) ' E ( )( ) ' ' E ( )( ) ' ' 'AY AY A AY A A Y Y A A Y Y A Aµ µ µ µ µ µ= − − = − − = ⋅ − − = AΣ
 
 
In particular, if  Z is a linear combination of , i.e. 1, , nY YK 1 1 n nZ a Y a Y= + +L , then 
 
 
(4) var( ) var( ' ) 'Z a Y a a= = Σ   where  1' ( , , )na a a= K  and  cov( )YΣ = . 
 

 [Proof:  Since 
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K M Y=  can be considered a 1 1×  matrix, we must have 

that 'Z Z= , and, therefore, cov( ) var( )Z Z=   (i.e., 

[ ] 2cov( ) E ( E( ))( E( )) ' E ( E( )) var( )Z Z Z Z Z Z Z Z⎡ ⎤= − − = − =⎣ ⎦ ).  We then see that 

(4) is a special case of (3) with  'A a=   ] 
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Example 2   Ordinary least squares (OLS) 
 
Consider the standard multiple regression model with one response, Y, and p explanatory 
variables 
 
(5) 0 1 1i i p ipY x x iuβ β β= + + + +L    for  1, 2, ,i n= K  
 
where, for simplicity, all ijx are considered fixed, non random quantities, and the errors, 

 are assumed to be iid and normally distributed with expectation,  
and  

1 2, , , nu u uK E( ) 0iu =
2var( )iu σ= .  We can write (5) in matrix form as follows 
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The three matrices on the right we denote by , , and X uβ  respectively. The model can 
now be written as 
 
(6) Y X uβ= +  
 
where X is the  (so called) design matrix, n p× β  the ( 1)p 1+ ×  vector of regression 
coefficients, and u the  vector of errors. Since 1n×
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(where 0  denotes a vector of zeroes), we get from i. (noting that X β  is non random) 
 
(7) E( ) E( )Y X u Xβ β= + =  
 
The covariance matrix for Y becomes, since Y X uβ− = , and using example 1, 
 
(8) [ ] [ ] 2cov( ) E ( )( ) ' E uu' cov( )Y nY Y X Y X uβ β σΣ = = − − = = = I   
 
The OLS estimator, β̂ , for β  is obtained by minimizing the sum of squares 
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with respect to β . Differentiating Q with respect to all the jβ ’s, and setting the 

derivatives equal to 0, leads to the following system of equations that the ˆ
jβ ’s must 

satisfy 
 
  ( ) ( )0 1 1

ˆ ˆ ˆ
i ip pi i

n x xβ β β+ + + =∑ ∑L ii
Y∑

 ( ) ( ) ( )2
1 0 1 1 1 1

ˆ ˆ ˆ
i i i ip pi i i i ii

x x x xβ β β+ + + =∑ ∑ ∑ ∑L x Y  

  L  
 ( ) ( ) ( )2

0 1 1
ˆ ˆ ˆ

ip ip i ip p ip ii i i i
x x x x x Yβ β β+ + + =∑ ∑ ∑ ∑L  

  
Noting that the coefficients of the left side are exactly the elements in the  
matrix  

( 1) ( 1p p+ × + )
'X X , and that the right side, written as a vector, simply is 'X Y , we can write 

the system more compactly as 
 
 ˆ' 'X X Xβ = Y  
 
Assuming that  'X X  is non singular (which can be shown to be the case if no single x-
variable can be written exactly as a linear combination of the other x-variables, i.e., there 
is no exact collinearity between the explanatory variables), we obtain the solution (the 
OLS estimator) 
 
(9) 1ˆ ( ' ) 'X X X Yβ −=  
 
It is now easy to prove that β̂  is unbiased since, from i.  and (7) 
 

(10) 
(7)  i.

1 1 1ˆE( ) E ( ' ) ' ( ' ) 'E( ) ( ' ) ' pX X X Y X X X Y X X X X Iβ β β− − −⎡ ⎤= = = =⎣ ⎦ β=

1

 
 
Writing  , we have , and obtain the covariance matrix from (3) 
and (8) [and also using the rule that the transposed of an inverse square matrix is the 
inverse of the transposed, 

1( ' ) 'C X X X−= ˆ CYβ =

1 ' ( ')A A−⎡ ⎤ =⎣ ⎦
− , which is seen by taking the transposed of the 

equation, . Remember also the 1A A I−⋅ = nAI A=  for any p n× -matrix A, and that, if c 
is a scalar, then c as factor can be taken outside a matrix product, ( )A cB cAB⋅ = . ]. 
 

  ( )
(3) (8)

2 2 2 1ˆcov( ) cov( ) ' ' ' ( ' ) '( ' )Y nCY C C C I C CC X X XX X Xβ σ σ σ − −= = Σ = = = 1
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Hence 
 
(11) 2ˆcov( ) ( ' ) 1X Xβ σ −=                        (End of example.) 
 
 
 

2 Multinormal distributions 
 
We say that the vector 1' ( , , )nX X X= K  is (multi)normally distributed with expectation 

E( )Xµ = , and covariance matrix, cov( )XΣ =  (written shortly  ~ ( , )X N µ Σ ), if the 
joint pdf is given by  
 

(12) 
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means the determinant of  . Σ
 
This distribution has a lot of convenient mathematical properties (see e.g. Greene, 
Econometric Analysis, chapter 3, for a summary), but here we only need the following: 
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i.e. a biv
 
 
Exercis
normal d
  
If  ~ ( , )X N µ Σ  and A is a p n×  constant matrix ( p n≤ ) and b a 1p×
constant vector, then  Y A ~ (E( ), cov( )) ( ,X b N Y Y N A b A Aµ= + = + Σ
For proof see e.g. Greene chapter 3. ] 

ular, this shows that all marginal distributions are also normal. For example, the 
l distribution of 1, 2X X  is normal since 

1

2

X
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⎝ ⎠
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= ⎜
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⎛ ⎞
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~ (E , cov ) ( , )
X X X

N N
X X X

µ σ σ
µ σ σ

ariate normal distribution 

e. Show that the pdf  in (14) as defined in (12), reduces to the bivariate 
ensity as defined in Example F in Rice section 3.3. [Hint: Introduce the 
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correlation, ρ , between 1X  and 2X ,  12 11 22ρ σ σ σ= , implying  2
12 11 22σ σ σ ρ= , and  

the determinant, 1 2 2
11 22 12 11 22

2

det(cov ) (1 )
X
X

σ σ σ σ σ ρ
⎛ ⎞

= − = −⎜ ⎟
⎝ ⎠

  etc. ] 

 
 
Example 3  (Continuation of example 2) 
 
The error vector, u, in (6) has expectation 0  and covariance, . We see 
from (12) that saying that 

2
u =cov( ) nu σΣ = I

2~ (0, )nu N Iσ  is the same as saying that  are iid 
and normally distributed with expectation, 

1 2, , , nu u uK

E( ) 0iu =  and  2var( )iu σ= . In fact, we have 
the determinant 
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and the exponent in (12) reduces to 
 
 

( ) 11 2 2
2 2 2

1 1 1 1 1( E( )) ' ( E( )) ' ' '
2 2 2 2u n n i

u u u u u I u u I u u u uσ
σ σ σ

−− ⎛ ⎞− − Σ − = − = − = − = −⎜ ⎟
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1
2 i∑

 
Substituting in (12), shows that the joint distribution (12) reduces to the product of n one-
dimensional 2(0, )N σ -distributions as the iid statement would imply. 
 
By (13), (7), and (8) we obtain that Y is normally distributed, 

, and, by (13) again, that 2~ (E( ), cov( )) ( , )nY N Y Y N X Iβ σ= 1ˆ ( ' ) 'X X X Yβ −=  is 
normally distributed 
 
  2 1ˆ ˆ ˆ~ (E( ), cov( )) ( , ( ' ) )N Nβ β β β σ −= X X
 
(End of example.) 
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3 On the asymptotic distribution for mle estimators (the multi 
parameter case) 
 
In this section we will only describe how to determine the asymptotic distribution for the 
mle estimator in case there are several unknown parameters in the model, without going 
into details of derivations and proofs. A good summary of the theory can be found in 
chapter 4 of Greene’s book, Econometric Analysis. See also Rice at the end of section 
8.5.2. 
 
Suppose that 1 2, , , nX X K X  are iid with ~ ( | )i iX f x θ   (pdf), where 1 2' ( , , , )rθ θ θ θ= K  is 

a r-dimensional vector of unknown parameters. Then the joint pdf  is 
1

( | )
n

i
i

f x θ
=
∏  and the 

log likelihood is 
 

 
1

( ) ln ( | )
n

i
i

l f xθ θ
=

=∑  

 
The mle estimator, θ̂ , solves r equations 
 

 
1

ˆln ( | ) 0, 1,2, ,
n

i
i j

f x jθ
θ=

∂
= =

∂∑ K r  

 
In order to define the  Fisher information matrix that is needed in the asymptotic 
distribution of 

r r×
θ̂ , we introduce 

 

 
2 ln ( | )( ) E , 1, 2, ,i

ij
i j

f Xm iθθ
θ θ

∂
= − =

∂ ∂
Kj r

r

  

 
Then the Fisher information matrix for one observation is defined as 
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θ θ
θ
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Under regularity conditions similar to the one-parameter case (see Greene for details), we 
have that the mle satisfies 
 

 1ˆ( ) (0, ( )
D

n
n N Iθ θ θ −

→∞
− → )  

 
The definition of convergence in distribution for random vectors is similar but slightly 
more technical than the definition for the one-dimensional case, and we skip the details 
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here (see Greene for a precise definition). However, the interpretation of the result is the 
same as in the one-dimensional case, i.e., that for large n,  
 

 
approximately

11ˆ ~ , (N I
n

θ θ −⎛ ⎞
⎜ ⎟
⎝ ⎠

)θ  

 
Hence we can say that θ̂  is asymptotically unbiased with asymptotic covariance 
matrix, 1(1 ) ( )n I θ − .  This matrix is unknown since θ  is unknown, but can be consistently 
estimated by replacing θ  by θ̂  (or any other consistent estimator of θ ). [That θ̂  is 

consistent means simply that  ˆ P

j n jθ θ
→∞
→  for all 1, 2, ,j r= K ]. A generalization of Slutzki’s 

lemma to the multivariate case (details omitted), now allow us to conclude that, for large 
n 
 
 

approximately
11 −⎛ ⎞(15)  

 
 
 
which is the impo
 

(16) 
approxima

ˆ ~Aθ

 
for any constant, 
 
From this we get 

estimated asympt

estimated covaria
 [Follows f

zeroes els
 

 
a

ˆ ˆ'j aθ θ=

 
Hence, we obtain

where 2zα  is the 
 
 

ˆ ˆ~ , ( )N I
n

θ θ⎜ ⎟
⎝ ⎠

θ

rtant result that you should know. Using (13) we also have  

tely
11 ˆ, ( ) 'N A A I A

n
θ θ −⎛ ⎞⋅⎜ ⎟

⎝ ⎠
  

p r×  matrix A.   

the following: Let  ( )ijk θ  denote element i,j in 1( )I θ − . Then the 

otic variance of ˆ
jθ  is the j-th element on the main diagonal in the 

nce matrix, i.e.  k n . ˆ( ) /jj θ
rom (16). In fact, let a ' (0, ,1, ,0)= K K  where the 1 is in position j and 
ewhere. Then from (16) 

pprox.
1

ˆ( )1 ˆ~ ' , ' ( ) , jj
j

k
N a a I a N

n n
θ

θ θ θ−
⎛ ⎞⎛ ⎞ = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

   ] 

 an approximate 1 α−  CI for jθ :   2
ˆ ˆ( )j jjz kαθ θ± n  

upper 2α -point in . (0,1)N
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Example 4.   Assume we want a CI for the transformed parameter, 1 2η θ θ= − . 
This we obtain from (16): Let ' (1, 1,0, ,0)b = − K . Then, by (16), 
 
 

1approx.

1 2 1 2 11 22 12

ˆ' ( ) 1ˆ ˆ ˆ ˆ ˆ ˆˆ ' ~ ( ' , , ( ( ) ( ) 2 ( ))b I bb N b N k k k
n n
θη θ θ θ θ θ θ θ θ θ

−⎛ ⎞ ⎛ ⎞= − = = − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

 
which leads to the approximate 1 α−  CI for 1 2θ θ− : 
 

 1 2 2 11 22 12
1ˆ ˆ ˆ ˆ ˆ( ) ( ) 2 ( )z k k k
nαθ θ θ θ− ± + − θ  

 
[Note that all covariance matrices are symmetric. Hence 12 21

ˆ ˆ( ) ( )k kθ θ= . ] 
 
(End of example.) 
 
 
Example 5     (On example C in Rice section 8.5 – precipitation data) 
 
Let iX  be the amount of precipitation for rainstorm no. i,  1, 2, ,i n= K   (  
observations). 

227n =

 
Model:   1 2, , , nX X K X  are iid  with  ~ ( , )iX α λΓ . The joint distribution is 
 

 1
1 2 1 2

1

, , , ~ ( | , ) ( )
( )

i
nn

x
n i n

i

X X X f x x x x e
α

λαλα λ
α

−−

=

∑=
Γ∏K L  

 
The log likelihood is 
 
(17) ( , ) ln ( 1) ln ln ( )i ii i

l n x x nα λ α α α λ α= + − − − Γ∑ ∑  
 
The first derivatives of l are 
 

 ln ln ln ( )ii

l n x nλ α
α α
∂ ∂

= + − Γ
∂ ∂∑  

 

 ii

l n xα
λ λ
∂

= −
∂ ∑  

 
Setting the derivatives equal to zero and solving with respect to α  and λ , gives the mle 
estimators α̂  and λ̂ . [Note. There are no explicit formulas for the solution, they must be 
found by numerical iterations. For example, Excel works well in this case by the Solver 
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module: Choose two cells for the arguments α  and λ , with start values e.g. at the 
moment estimates, and then a third cell for the function (17). Then use Solver to 
maximize (17). This can also be done in STATA by the ml-command, but slightly more 
involved.] 
 
Using his program, Rice obtained the mle estimates. 
 
 ˆ 0,441α =   and   ˆ 1,96λ =
 
We want approximate 90% CI’s for α  and λ  based on the asymptotic normal 
distribution of  α̂  and λ̂ . In order to calculate the asymptotic standard errors we need the 
so called di- and trigamma functions: 
 

 Digamma function: ( ) ln ( )ψ α α
α
∂

= Γ
∂

 

 

 Trigamma function: 
2

2'( ) ln ( )ψ α α
α
∂

= Γ
∂

 

 
Both functions can be calculated in STATA (under the names digamma and trigamma). 
 
We need the Fisher information matrix: 
 
 ln ( | , ) ln ln ( ) ( 1) lni i if X X Xα λ α λ α α λ= − Γ + − −  
 
giving 
 

 ln ln ( ) ln i
f Xλ ψ α

α
∂

= − +
∂

     and      ln
i

f Xα
λ λ

∂
= −

∂
 

 
Hence 
 

 
2

2

ln '( )f ψ α
α

∂
= −

∂
   (trigamma) 

 

 
2 2ln ln 1f f
α λ λ α

∂ ∂
= =

∂ ∂ ∂ ∂ λ
 

 

 
2

2 2

ln f α
λ λ

∂
= −

∂
 

 
Hence the Fisher information matrix for one observation 
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2 2

1 1'( ) '( )
( , ) E

1 1
I

ψ α ψ α
λ λα λ
α α

λ λ λ

⎛ ⎞ ⎛− −⎜ ⎟ ⎜
= − =⎜ ⎟ ⎜

⎜ ⎟ ⎜− −⎜ ⎟ ⎜
⎝ ⎠ ⎝ λ

⎞
⎟
⎟
⎟⎟
⎠

 

 
The inverse of a symmetric  matrix is 2 2×
 

 
1

2

1a c b c
c b c aab c

− −⎛ ⎞ ⎛
=⎜ ⎟ ⎜ −−⎝ ⎠ ⎝

⎞
⎟
⎠

 

 
Hence 
 

 
2

1
2

2 2

1
1 1( , ) '( ) 1 1 ''( ) 1'( )

I

α
α λλ λα λ αψ α ( )λ λ ψ ααψ αψ αλ λ λ

−

⎛ ⎞
⎜ ⎟ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎝ ⎠− ⎜ ⎟
⎝ ⎠

 

 
We obtain an estimate of this by substituting the mle, ˆ 0,441α =   and  , for ˆ 1,96λ = α  
and λ  
 

 1

2

ˆˆ 0, 25903 1,151231ˆˆ( , )
ˆ ˆˆ ˆ 1,15123 13,82770'( ) 1 ˆ'( )

I
α λ

α λ
αψ α λ λ ψ α

−
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
 

 
Here we found  ˆ'( ) 6,128169ψ α =  from STATA by the command: 
 

 di trigamma(0.441) 
 

From the theory we have that  , where the asymptotic covariance is 
approx.ˆ

~ ,ˆ N
α α

λλ

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
C ⎟

 

 1 0,0011411 0,00507151 ˆˆ( , )
0,0050715 0,0609150

C I
n

α λ − ⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
 

 
Hence the asymptotic standard errors 
 
 ˆse( ) 0,0011411 0,03378α = =  and  ˆse( ) 0,060950 0, 24681λ = =  
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According to the theory we then obtain approximate 90% CI for α  and λ  
 
 ˆ ˆ1,64 se( ) 0,441 (1,64)(0,03378) [0,386, 0,496]α α± ⋅ = ± =  
 
  ˆ ˆ1,64 se( ) 1,96 (1,64)(0, 247) [1,55, 2,37]λ λ± ⋅ = ± =
 
Rice (example E, section 8.5.3)) obtains approximate 90% CI’s by the parametric 
bootstrap method: 
 
 :α  [0,404,  0,523] 
 
 :λ  [1,46,  2,32] 
 
The difference between the asymptotic intervals and the bootstrap intervals does not 
appear to be substantial. With as much as 227 observations it is to be expected that the 
asymptotic theory should work well. 
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